# Group Theory In Physics Wuki Tung Pdf 11

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

## Group Theory In Physics Wuki Tung Pdf 11

String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and condensed matter physics, and it has stimulated a number of major developments in pure mathematics. Because string theory potentially provides a unified description of gravity and particle physics, it is a candidate for a theory of everything, a self-contained mathematical model that describes all fundamental forces and forms of matter. Despite much work on these problems, it is not known to what extent string theory describes the real world or how much freedom the theory allows in the choice of its details.

String theory was first studied in the late 1960s as a theory of the strong nuclear force, before being abandoned in favor of quantum chromodynamics. Subsequently, it was realized that the very properties that made string theory unsuitable as a theory of nuclear physics made it a promising candidate for a quantum theory of gravity. The earliest version of string theory, bosonic string theory, incorporated only the class of particles known as bosons. It later developed into superstring theory, which posits a connection called supersymmetry between bosons and the class of particles called fermions. Five consistent versions of superstring theory were developed before it was conjectured in the mid-1990s that they were all different limiting cases of a single theory in 11 dimensions known as M-theory. In late 1997, theorists discovered an important relationship called the anti-de Sitter/conformal field theory correspondence (AdS/CFT correspondence), which relates string theory to another type of physical theory called a quantum field theory.

One of the challenges of string theory is that the full theory does not have a satisfactory definition in all circumstances. Another issue is that the theory is thought to describe an enormous landscape of possible universes, which has complicated efforts to develop theories of particle physics based on string theory. These issues have led some in the community to criticize these approaches to physics, and to question the value of continued research on string theory unification.

In the 20th century, two theoretical frameworks emerged for formulating the laws of physics. The first is Albert Einstein's general theory of relativity, a theory that explains the force of gravity and the structure of spacetime at the macro-level. The other is quantum mechanics, a completely different formulation, which uses known probability principles to describe physical phenomena at the micro-level. By the late 1970s, these two frameworks had proven to be sufficient to explain most of the observed features of the universe, from elementary particles to atoms to the evolution of stars and the universe as a whole.[1]

In spite of these successes, there are still many problems that remain to be solved. One of the deepest problems in modern physics is the problem of quantum gravity.[1] The general theory of relativity is formulated within the framework of classical physics, whereas the other fundamental forces are described within the framework of quantum mechanics. A quantum theory of gravity is needed in order to reconcile general relativity with the principles of quantum mechanics, but difficulties arise when one attempts to apply the usual prescriptions of quantum theory to the force of gravity.[2] In addition to the problem of developing a consistent theory of quantum gravity, there are many other fundamental problems in the physics of atomic nuclei, black holes, and the early universe.[a]

String theory is a theoretical framework that attempts to address these questions and many others. The starting point for string theory is the idea that the point-like particles of particle physics can also be modeled as one-dimensional objects called strings. String theory describes how strings propagate through space and interact with each other. In a given version of string theory, there is only one kind of string, which may look like a small loop or segment of ordinary string, and it can vibrate in different ways. On distance scales larger than the string scale, a string will look just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In this way, all of the different elementary particles may be viewed as vibrating strings. In string theory, one of the vibrational states of the string gives rise to the graviton, a quantum mechanical particle that carries gravitational force. Thus string theory is a theory of quantum gravity.[3]

Studies of string theory have also yielded a number of results on the nature of black holes and the gravitational interaction. There are certain paradoxes that arise when one attempts to understand the quantum aspects of black holes, and work on string theory has attempted to clarify these issues. In late 1997 this line of work culminated in the discovery of the anti-de Sitter/conformal field theory correspondence or AdS/CFT.[5] This is a theoretical result that relates string theory to other physical theories which are better understood theoretically. The AdS/CFT correspondence has implications for the study of black holes and quantum gravity, and it has been applied to other subjects, including nuclear[6] and condensed matter physics.[7][8]

One of the challenges of string theory is that the full theory does not have a satisfactory definition in all circumstances. The scattering of strings is most straightforwardly defined using the techniques of perturbation theory, but it is not known in general how to define string theory nonperturbatively.[10] It is also not clear whether there is any principle by which string theory selects its vacuum state, the physical state that determines the properties of our universe.[11] These problems have led some in the community to criticize these approaches to the unification of physics and question the value of continued research on these problems.[12]

The application of quantum mechanics to physical objects such as the electromagnetic field, which are extended in space and time, is known as quantum field theory. In particle physics, quantum field theories form the basis for our understanding of elementary particles, which are modeled as excitations in the fundamental fields.[13]

In spite of the fact that the Universe is well described by 4D spacetime, there are several reasons why physicists consider theories in other dimensions. In some cases, by modeling spacetime in a different number of dimensions, a theory becomes more mathematically tractable, and one can perform calculations and gain general insights more easily.[b] There are also situations where theories in two or three spacetime dimensions are useful for describing phenomena in condensed matter physics.[13] Finally, there exist scenarios in which there could actually be more than 4D of spacetime which have nonetheless managed to escape detection.[20]

Another approach to reducing the number of dimensions is the so-called brane-world scenario. In this approach, physicists assume that the observable universe is a four-dimensional subspace of a higher dimensional space. In such models, the force-carrying bosons of particle physics arise from open strings with endpoints attached to the four-dimensional subspace, while gravity arises from closed strings propagating through the larger ambient space. This idea plays an important role in attempts to develop models of real-world physics based on string theory, and it provides a natural explanation for the weakness of gravity compared to the other fundamental forces.[24]

In the first superstring revolution in 1984, many physicists turned to string theory as a unified theory of particle physics and quantum gravity. Unlike supergravity theory, string theory was able to accommodate the chirality of the standard model, and it provided a theory of gravity consistent with quantum effects.[35] Another feature of string theory that many physicists were drawn to in the 1980s and 1990s was its high degree of uniqueness. In ordinary particle theories, one can consider any collection of elementary particles whose classical behavior is described by an arbitrary Lagrangian. In string theory, the possibilities are much more constrained: by the 1990s, physicists had argued that there were only five consistent supersymmetric versions of the theory.[35]

At around the same time, as many physicists were studying the properties of strings, a small group of physicists were examining the possible applications of higher dimensional objects. In 1987, Eric Bergshoeff, Ergin Sezgin, and Paul Townsend showed that eleven-dimensional supergravity includes two-dimensional branes.[40] Intuitively, these objects look like sheets or membranes propagating through the eleven-dimensional spacetime. Shortly after this discovery, Michael Duff, Paul Howe, Takeo Inami, and Kellogg Stelle considered a particular compactification of eleven-dimensional supergravity with one of the dimensions curled up into a circle.[41] In this setting, one can imagine the membrane wrapping around the circular dimension. If the radius of the circle is sufficiently small, then this membrane looks just like a string in ten-dimensional spacetime. Duff and his collaborators showed that this construction reproduces exactly the strings appearing in type IIA superstring theory.[42]